2022/12/30 13:05:19 - mmengine - INFO - ------------------------------------------------------------ System environment: sys.platform: linux Python: 3.9.13 (main, Aug 25 2022, 23:26:10) [GCC 11.2.0] CUDA available: True numpy_random_seed: 1105499349 GPU 0,1,2,3,4,5,6,7: NVIDIA A100-SXM4-80GB CUDA_HOME: /mnt/petrelfs/share/cuda-11.3 NVCC: Cuda compilation tools, release 11.3, V11.3.109 GCC: gcc (GCC) 5.4.0 PyTorch: 1.11.0 PyTorch compiling details: PyTorch built with: - GCC 7.3 - C++ Version: 201402 - Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 11.3 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.2 - Magma 2.5.2 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, TorchVision: 0.12.0 OpenCV: 4.6.0 MMEngine: 0.3.2 Runtime environment: cudnn_benchmark: False mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: None diff_rank_seed: False deterministic: False Distributed launcher: pytorch Distributed training: True GPU number: 8 ------------------------------------------------------------ 2022/12/30 13:05:19 - mmengine - INFO - Config: default_scope = 'mmaction' default_hooks = dict( runtime_info=dict(type='RuntimeInfoHook'), timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=100, ignore_last=False), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1, save_best='auto'), sampler_seed=dict(type='DistSamplerSeedHook'), sync_buffers=dict(type='SyncBuffersHook')) env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl')) log_processor = dict(type='LogProcessor', window_size=20, by_epoch=True) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='ActionVisualizer', vis_backends=[dict(type='LocalVisBackend')]) log_level = 'INFO' load_from = None resume = False model = dict( type='RecognizerGCN', backbone=dict( type='STGCN', gcn_adaptive='init', gcn_with_res=True, tcn_type='mstcn', graph_cfg=dict(layout='nturgb+d', mode='spatial')), cls_head=dict(type='GCNHead', num_classes=60, in_channels=256)) dataset_type = 'PoseDataset' ann_file = 'data/skeleton/ntu60_3d.pkl' train_pipeline = [ dict(type='PreNormalize3D'), dict(type='GenSkeFeat', dataset='nturgb+d', feats=['b']), dict(type='UniformSampleFrames', clip_len=100), dict(type='PoseDecode'), dict(type='FormatGCNInput', num_person=2), dict(type='PackActionInputs') ] val_pipeline = [ dict(type='PreNormalize3D'), dict(type='GenSkeFeat', dataset='nturgb+d', feats=['b']), dict( type='UniformSampleFrames', clip_len=100, num_clips=1, test_mode=True), dict(type='PoseDecode'), dict(type='FormatGCNInput', num_person=2), dict(type='PackActionInputs') ] test_pipeline = [ dict(type='PreNormalize3D'), dict(type='GenSkeFeat', dataset='nturgb+d', feats=['b']), dict( type='UniformSampleFrames', clip_len=100, num_clips=10, test_mode=True), dict(type='PoseDecode'), dict(type='FormatGCNInput', num_person=2), dict(type='PackActionInputs') ] train_dataloader = dict( batch_size=16, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=5, dataset=dict( type='PoseDataset', ann_file='data/skeleton/ntu60_3d.pkl', pipeline=[ dict(type='PreNormalize3D'), dict(type='GenSkeFeat', dataset='nturgb+d', feats=['b']), dict(type='UniformSampleFrames', clip_len=100), dict(type='PoseDecode'), dict(type='FormatGCNInput', num_person=2), dict(type='PackActionInputs') ], split='xsub_train'))) val_dataloader = dict( batch_size=16, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='PoseDataset', ann_file='data/skeleton/ntu60_3d.pkl', pipeline=[ dict(type='PreNormalize3D'), dict(type='GenSkeFeat', dataset='nturgb+d', feats=['b']), dict( type='UniformSampleFrames', clip_len=100, num_clips=1, test_mode=True), dict(type='PoseDecode'), dict(type='FormatGCNInput', num_person=2), dict(type='PackActionInputs') ], split='xsub_val', test_mode=True)) test_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='PoseDataset', ann_file='data/skeleton/ntu60_3d.pkl', pipeline=[ dict(type='PreNormalize3D'), dict(type='GenSkeFeat', dataset='nturgb+d', feats=['b']), dict( type='UniformSampleFrames', clip_len=100, num_clips=10, test_mode=True), dict(type='PoseDecode'), dict(type='FormatGCNInput', num_person=2), dict(type='PackActionInputs') ], split='xsub_val', test_mode=True)) val_evaluator = [dict(type='AccMetric')] test_evaluator = [dict(type='AccMetric')] train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=16, val_begin=1, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') param_scheduler = [ dict( type='CosineAnnealingLR', eta_min=0, T_max=16, by_epoch=True, convert_to_iter_based=True) ] optim_wrapper = dict( optimizer=dict( type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0005, nesterov=True)) auto_scale_lr = dict(enable=False, base_batch_size=128) launcher = 'pytorch' work_dir = './work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d' randomness = dict(seed=None, diff_rank_seed=False, deterministic=False) 2022/12/30 13:05:19 - mmengine - INFO - Result has been saved to /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/modules_statistic_results.json 2022/12/30 13:05:19 - mmengine - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) RuntimeInfoHook (BELOW_NORMAL) LoggerHook -------------------- before_train: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (VERY_LOW ) CheckpointHook -------------------- before_train_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) DistSamplerSeedHook -------------------- before_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook -------------------- after_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_train_epoch: (NORMAL ) IterTimerHook (NORMAL ) SyncBuffersHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_val_epoch: (NORMAL ) IterTimerHook -------------------- before_val_iter: (NORMAL ) IterTimerHook -------------------- after_val_iter: (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_val_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (VERY_LOW ) CheckpointHook -------------------- before_test_epoch: (NORMAL ) IterTimerHook -------------------- before_test_iter: (NORMAL ) IterTimerHook -------------------- after_test_iter: (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_test_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_run: (BELOW_NORMAL) LoggerHook -------------------- Name of parameter - Initialization information backbone.data_bn.weight - torch.Size([75]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.data_bn.bias - torch.Size([75]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.conv.weight - torch.Size([192, 3, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.conv.bias - torch.Size([192]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.down.0.weight - torch.Size([64, 3, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.down.0.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.down.1.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.gcn.down.1.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.0.0.weight - torch.Size([14, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.0.0.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.0.1.weight - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.0.1.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.0.3.conv.weight - torch.Size([14, 14, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.0.3.conv.bias - torch.Size([14]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.1.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.1.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.1.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.1.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.1.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.1.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.2.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.2.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.2.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.2.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.2.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.2.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.3.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.3.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.3.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.3.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.3.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.3.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.0.tcn.branches.4.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.4.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.4.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.4.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.5.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.branches.5.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.transform.0.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.transform.0.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.transform.2.weight - torch.Size([64, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.transform.2.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.0.tcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.gcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.gcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.gcn.conv.weight - torch.Size([192, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.gcn.conv.bias - torch.Size([192]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.0.0.weight - torch.Size([14, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.0.0.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.0.1.weight - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.0.1.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.0.3.conv.weight - torch.Size([14, 14, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.0.3.conv.bias - torch.Size([14]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.1.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.1.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.1.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.1.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.1.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.1.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.2.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.2.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.2.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.2.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.2.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.2.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.3.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.3.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.3.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.3.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.3.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.3.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.1.tcn.branches.4.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.4.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.4.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.4.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.5.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.branches.5.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.transform.0.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.transform.0.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.transform.2.weight - torch.Size([64, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.transform.2.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.1.tcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.gcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.gcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.gcn.conv.weight - torch.Size([192, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.gcn.conv.bias - torch.Size([192]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.0.0.weight - torch.Size([14, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.0.0.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.0.1.weight - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.0.1.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.0.3.conv.weight - torch.Size([14, 14, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.0.3.conv.bias - torch.Size([14]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.1.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.1.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.1.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.1.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.1.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.1.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.2.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.2.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.2.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.2.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.2.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.2.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.3.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.3.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.3.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.3.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.3.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.3.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.2.tcn.branches.4.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.4.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.4.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.4.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.5.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.branches.5.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.transform.0.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.transform.0.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.transform.2.weight - torch.Size([64, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.transform.2.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.2.tcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.gcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.gcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.gcn.conv.weight - torch.Size([192, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.gcn.conv.bias - torch.Size([192]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.0.0.weight - torch.Size([14, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.0.0.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.0.1.weight - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.0.1.bias - torch.Size([14]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.0.3.conv.weight - torch.Size([14, 14, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.0.3.conv.bias - torch.Size([14]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.1.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.1.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.1.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.1.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.1.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.1.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.2.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.2.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.2.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.2.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.2.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.2.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.3.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.3.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.3.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.3.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.3.3.conv.weight - torch.Size([10, 10, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.3.3.conv.bias - torch.Size([10]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.3.tcn.branches.4.0.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.4.0.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.4.1.weight - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.4.1.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.5.weight - torch.Size([10, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.branches.5.bias - torch.Size([10]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.transform.0.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.transform.0.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.transform.2.weight - torch.Size([64, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.transform.2.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.bn.weight - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.3.tcn.bn.bias - torch.Size([64]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.conv.weight - torch.Size([384, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.conv.bias - torch.Size([384]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.down.0.weight - torch.Size([128, 64, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.down.0.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.down.1.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.gcn.down.1.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.0.0.weight - torch.Size([23, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.0.0.bias - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.0.1.weight - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.0.1.bias - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.0.3.conv.weight - torch.Size([23, 23, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.0.3.conv.bias - torch.Size([23]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.1.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.1.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.1.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.1.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.1.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.1.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.2.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.2.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.2.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.2.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.2.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.2.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.3.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.3.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.3.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.3.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.3.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.3.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.tcn.branches.4.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.4.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.4.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.4.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.5.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.branches.5.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.transform.0.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.transform.0.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.transform.2.weight - torch.Size([128, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.transform.2.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.tcn.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.residual.conv.weight - torch.Size([128, 64, 1, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.residual.conv.bias - torch.Size([128]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.4.residual.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.4.residual.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.gcn.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.gcn.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.gcn.conv.weight - torch.Size([384, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.gcn.conv.bias - torch.Size([384]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.0.0.weight - torch.Size([23, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.0.0.bias - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.0.1.weight - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.0.1.bias - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.0.3.conv.weight - torch.Size([23, 23, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.0.3.conv.bias - torch.Size([23]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.1.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.1.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.1.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.1.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.1.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.1.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.2.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.2.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.2.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.2.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.2.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.2.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.3.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.3.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.3.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.3.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.3.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.3.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.5.tcn.branches.4.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.4.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.4.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.4.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.5.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.branches.5.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.transform.0.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.transform.0.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.transform.2.weight - torch.Size([128, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.transform.2.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.5.tcn.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.gcn.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.gcn.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.gcn.conv.weight - torch.Size([384, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.gcn.conv.bias - torch.Size([384]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.0.0.weight - torch.Size([23, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.0.0.bias - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.0.1.weight - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.0.1.bias - torch.Size([23]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.0.3.conv.weight - torch.Size([23, 23, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.0.3.conv.bias - torch.Size([23]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.1.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.1.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.1.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.1.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.1.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.1.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.2.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.2.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.2.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.2.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.2.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.2.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.3.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.3.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.3.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.3.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.3.3.conv.weight - torch.Size([21, 21, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.3.3.conv.bias - torch.Size([21]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.6.tcn.branches.4.0.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.4.0.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.4.1.weight - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.4.1.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.5.weight - torch.Size([21, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.branches.5.bias - torch.Size([21]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.transform.0.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.transform.0.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.transform.2.weight - torch.Size([128, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.transform.2.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.bn.weight - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.6.tcn.bn.bias - torch.Size([128]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.conv.weight - torch.Size([768, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.conv.bias - torch.Size([768]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.down.0.weight - torch.Size([256, 128, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.down.0.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.down.1.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.gcn.down.1.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.0.0.weight - torch.Size([46, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.0.0.bias - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.0.1.weight - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.0.1.bias - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.0.3.conv.weight - torch.Size([46, 46, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.0.3.conv.bias - torch.Size([46]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.1.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.1.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.1.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.1.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.1.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.1.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.2.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.2.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.2.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.2.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.2.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.2.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.3.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.3.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.3.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.3.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.3.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.3.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.tcn.branches.4.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.4.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.4.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.4.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.5.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.branches.5.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.transform.0.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.transform.0.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.transform.2.weight - torch.Size([256, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.transform.2.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.tcn.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.residual.conv.weight - torch.Size([256, 128, 1, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.residual.conv.bias - torch.Size([256]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.7.residual.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.7.residual.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.gcn.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.gcn.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.gcn.conv.weight - torch.Size([768, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.gcn.conv.bias - torch.Size([768]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.0.0.weight - torch.Size([46, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.0.0.bias - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.0.1.weight - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.0.1.bias - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.0.3.conv.weight - torch.Size([46, 46, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.0.3.conv.bias - torch.Size([46]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.1.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.1.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.1.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.1.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.1.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.1.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.2.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.2.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.2.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.2.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.2.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.2.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.3.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.3.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.3.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.3.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.3.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.3.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.8.tcn.branches.4.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.4.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.4.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.4.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.5.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.branches.5.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.transform.0.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.transform.0.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.transform.2.weight - torch.Size([256, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.transform.2.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.8.tcn.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.gcn.A - torch.Size([3, 25, 25]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.gcn.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.gcn.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.gcn.conv.weight - torch.Size([768, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.gcn.conv.bias - torch.Size([768]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.0.0.weight - torch.Size([46, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.0.0.bias - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.0.1.weight - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.0.1.bias - torch.Size([46]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.0.3.conv.weight - torch.Size([46, 46, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.0.3.conv.bias - torch.Size([46]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.1.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.1.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.1.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.1.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.1.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.1.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.2.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.2.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.2.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.2.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.2.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.2.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.3.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.3.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.3.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.3.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.3.3.conv.weight - torch.Size([42, 42, 3, 1]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.3.3.conv.bias - torch.Size([42]): KaimingInit: a=0, mode=fan_out, nonlinearity=relu, distribution =normal, bias=0 backbone.gcn.9.tcn.branches.4.0.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.4.0.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.4.1.weight - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.4.1.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.5.weight - torch.Size([42, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.branches.5.bias - torch.Size([42]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.transform.0.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.transform.0.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.transform.2.weight - torch.Size([256, 256, 1, 1]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.transform.2.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.bn.weight - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN backbone.gcn.9.tcn.bn.bias - torch.Size([256]): The value is the same before and after calling `init_weights` of RecognizerGCN cls_head.fc.weight - torch.Size([60, 256]): NormalInit: mean=0, std=0.01, bias=0 cls_head.fc.bias - torch.Size([60]): NormalInit: mean=0, std=0.01, bias=0 2022/12/30 13:06:06 - mmengine - INFO - Checkpoints will be saved to /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d. 2022/12/30 13:06:36 - mmengine - INFO - Epoch(train) [1][ 100/1567] lr: 9.9996e-02 eta: 2:04:44 time: 0.1872 data_time: 0.0066 memory: 2656 loss: 2.7526 top1_acc: 0.1875 top5_acc: 0.6250 loss_cls: 2.7526 2022/12/30 13:06:54 - mmengine - INFO - Epoch(train) [1][ 200/1567] lr: 9.9984e-02 eta: 1:40:16 time: 0.1825 data_time: 0.0069 memory: 2656 loss: 2.3502 top1_acc: 0.0000 top5_acc: 0.6250 loss_cls: 2.3502 2022/12/30 13:07:13 - mmengine - INFO - Epoch(train) [1][ 300/1567] lr: 9.9965e-02 eta: 1:32:33 time: 0.1852 data_time: 0.0070 memory: 2656 loss: 1.6982 top1_acc: 0.5000 top5_acc: 0.9375 loss_cls: 1.6982 2022/12/30 13:07:32 - mmengine - INFO - Epoch(train) [1][ 400/1567] lr: 9.9938e-02 eta: 1:28:21 time: 0.1862 data_time: 0.0069 memory: 2656 loss: 1.4599 top1_acc: 0.5625 top5_acc: 0.8750 loss_cls: 1.4599 2022/12/30 13:07:50 - mmengine - INFO - Epoch(train) [1][ 500/1567] lr: 9.9902e-02 eta: 1:25:39 time: 0.1860 data_time: 0.0071 memory: 2656 loss: 1.3846 top1_acc: 0.6875 top5_acc: 0.8125 loss_cls: 1.3846 2022/12/30 13:08:09 - mmengine - INFO - Epoch(train) [1][ 600/1567] lr: 9.9859e-02 eta: 1:23:49 time: 0.1852 data_time: 0.0067 memory: 2656 loss: 1.1640 top1_acc: 0.5625 top5_acc: 0.8750 loss_cls: 1.1640 2022/12/30 13:08:28 - mmengine - INFO - Epoch(train) [1][ 700/1567] lr: 9.9808e-02 eta: 1:22:28 time: 0.1972 data_time: 0.0069 memory: 2656 loss: 0.9758 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.9758 2022/12/30 13:08:46 - mmengine - INFO - Epoch(train) [1][ 800/1567] lr: 9.9750e-02 eta: 1:21:00 time: 0.1854 data_time: 0.0081 memory: 2656 loss: 1.1747 top1_acc: 0.5625 top5_acc: 0.9375 loss_cls: 1.1747 2022/12/30 13:09:05 - mmengine - INFO - Epoch(train) [1][ 900/1567] lr: 9.9683e-02 eta: 1:20:04 time: 0.1876 data_time: 0.0077 memory: 2656 loss: 0.8698 top1_acc: 0.6250 top5_acc: 0.9375 loss_cls: 0.8698 2022/12/30 13:09:23 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:09:23 - mmengine - INFO - Epoch(train) [1][1000/1567] lr: 9.9609e-02 eta: 1:19:12 time: 0.1896 data_time: 0.0067 memory: 2656 loss: 0.7725 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.7725 2022/12/30 13:09:42 - mmengine - INFO - Epoch(train) [1][1100/1567] lr: 9.9527e-02 eta: 1:18:23 time: 0.1806 data_time: 0.0075 memory: 2656 loss: 0.7478 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.7478 2022/12/30 13:10:00 - mmengine - INFO - Epoch(train) [1][1200/1567] lr: 9.9437e-02 eta: 1:17:40 time: 0.1827 data_time: 0.0069 memory: 2656 loss: 0.8207 top1_acc: 0.7500 top5_acc: 0.9375 loss_cls: 0.8207 2022/12/30 13:10:19 - mmengine - INFO - Epoch(train) [1][1300/1567] lr: 9.9339e-02 eta: 1:17:06 time: 0.1801 data_time: 0.0066 memory: 2656 loss: 0.8203 top1_acc: 0.8125 top5_acc: 0.9375 loss_cls: 0.8203 2022/12/30 13:10:37 - mmengine - INFO - Epoch(train) [1][1400/1567] lr: 9.9234e-02 eta: 1:16:25 time: 0.1822 data_time: 0.0073 memory: 2656 loss: 0.6932 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.6932 2022/12/30 13:10:56 - mmengine - INFO - Epoch(train) [1][1500/1567] lr: 9.9121e-02 eta: 1:15:53 time: 0.1870 data_time: 0.0072 memory: 2656 loss: 0.6765 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.6765 2022/12/30 13:11:08 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:11:08 - mmengine - INFO - Epoch(train) [1][1567/1567] lr: 9.9040e-02 eta: 1:15:26 time: 0.1736 data_time: 0.0065 memory: 2656 loss: 0.6786 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.6786 2022/12/30 13:11:08 - mmengine - INFO - Saving checkpoint at 1 epochs 2022/12/30 13:11:13 - mmengine - INFO - Epoch(val) [1][100/129] eta: 0:00:01 time: 0.0421 data_time: 0.0078 memory: 378 2022/12/30 13:11:14 - mmengine - INFO - Epoch(val) [1][129/129] acc/top1: 0.6428 acc/top5: 0.9127 acc/mean1: 0.6428 2022/12/30 13:11:15 - mmengine - INFO - The best checkpoint with 0.6428 acc/top1 at 1 epoch is saved to best_acc/top1_epoch_1.pth. 2022/12/30 13:11:34 - mmengine - INFO - Epoch(train) [2][ 100/1567] lr: 9.8914e-02 eta: 1:15:00 time: 0.1824 data_time: 0.0068 memory: 2656 loss: 0.5809 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.5809 2022/12/30 13:11:52 - mmengine - INFO - Epoch(train) [2][ 200/1567] lr: 9.8781e-02 eta: 1:14:24 time: 0.1769 data_time: 0.0073 memory: 2656 loss: 0.5838 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.5838 2022/12/30 13:12:09 - mmengine - INFO - Epoch(train) [2][ 300/1567] lr: 9.8639e-02 eta: 1:13:51 time: 0.1855 data_time: 0.0071 memory: 2656 loss: 0.5433 top1_acc: 0.7500 top5_acc: 0.9375 loss_cls: 0.5433 2022/12/30 13:12:27 - mmengine - INFO - Epoch(train) [2][ 400/1567] lr: 9.8491e-02 eta: 1:13:16 time: 0.1782 data_time: 0.0067 memory: 2656 loss: 0.5331 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.5331 2022/12/30 13:12:33 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:12:45 - mmengine - INFO - Epoch(train) [2][ 500/1567] lr: 9.8334e-02 eta: 1:12:44 time: 0.1814 data_time: 0.0079 memory: 2656 loss: 0.7135 top1_acc: 0.7500 top5_acc: 0.8750 loss_cls: 0.7135 2022/12/30 13:13:04 - mmengine - INFO - Epoch(train) [2][ 600/1567] lr: 9.8170e-02 eta: 1:12:21 time: 0.1849 data_time: 0.0068 memory: 2656 loss: 0.6817 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.6817 2022/12/30 13:13:22 - mmengine - INFO - Epoch(train) [2][ 700/1567] lr: 9.7998e-02 eta: 1:11:59 time: 0.1843 data_time: 0.0071 memory: 2656 loss: 0.7169 top1_acc: 0.6875 top5_acc: 1.0000 loss_cls: 0.7169 2022/12/30 13:13:41 - mmengine - INFO - Epoch(train) [2][ 800/1567] lr: 9.7819e-02 eta: 1:11:41 time: 0.1894 data_time: 0.0079 memory: 2656 loss: 0.5780 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.5780 2022/12/30 13:14:00 - mmengine - INFO - Epoch(train) [2][ 900/1567] lr: 9.7632e-02 eta: 1:11:19 time: 0.1870 data_time: 0.0069 memory: 2656 loss: 0.6622 top1_acc: 0.6875 top5_acc: 0.8125 loss_cls: 0.6622 2022/12/30 13:14:18 - mmengine - INFO - Epoch(train) [2][1000/1567] lr: 9.7438e-02 eta: 1:10:55 time: 0.1822 data_time: 0.0070 memory: 2656 loss: 0.5815 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.5815 2022/12/30 13:14:37 - mmengine - INFO - Epoch(train) [2][1100/1567] lr: 9.7236e-02 eta: 1:10:34 time: 0.1783 data_time: 0.0075 memory: 2656 loss: 0.5433 top1_acc: 0.7500 top5_acc: 0.8125 loss_cls: 0.5433 2022/12/30 13:14:56 - mmengine - INFO - Epoch(train) [2][1200/1567] lr: 9.7027e-02 eta: 1:10:13 time: 0.1846 data_time: 0.0069 memory: 2656 loss: 0.5758 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.5758 2022/12/30 13:15:14 - mmengine - INFO - Epoch(train) [2][1300/1567] lr: 9.6810e-02 eta: 1:09:53 time: 0.1883 data_time: 0.0074 memory: 2656 loss: 0.5686 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.5686 2022/12/30 13:15:33 - mmengine - INFO - Epoch(train) [2][1400/1567] lr: 9.6587e-02 eta: 1:09:30 time: 0.1779 data_time: 0.0068 memory: 2656 loss: 0.6138 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.6138 2022/12/30 13:15:39 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:15:51 - mmengine - INFO - Epoch(train) [2][1500/1567] lr: 9.6355e-02 eta: 1:09:09 time: 0.1847 data_time: 0.0077 memory: 2656 loss: 0.5127 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.5127 2022/12/30 13:16:04 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:16:04 - mmengine - INFO - Epoch(train) [2][1567/1567] lr: 9.6196e-02 eta: 1:08:56 time: 0.1821 data_time: 0.0066 memory: 2656 loss: 0.7284 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.7284 2022/12/30 13:16:04 - mmengine - INFO - Saving checkpoint at 2 epochs 2022/12/30 13:16:09 - mmengine - INFO - Epoch(val) [2][100/129] eta: 0:00:01 time: 0.0459 data_time: 0.0145 memory: 378 2022/12/30 13:16:10 - mmengine - INFO - Epoch(val) [2][129/129] acc/top1: 0.7187 acc/top5: 0.9381 acc/mean1: 0.7187 2022/12/30 13:16:10 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_1.pth is removed 2022/12/30 13:16:10 - mmengine - INFO - The best checkpoint with 0.7187 acc/top1 at 2 epoch is saved to best_acc/top1_epoch_2.pth. 2022/12/30 13:16:29 - mmengine - INFO - Epoch(train) [3][ 100/1567] lr: 9.5953e-02 eta: 1:08:33 time: 0.1907 data_time: 0.0070 memory: 2656 loss: 0.4240 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.4240 2022/12/30 13:16:47 - mmengine - INFO - Epoch(train) [3][ 200/1567] lr: 9.5703e-02 eta: 1:08:10 time: 0.1798 data_time: 0.0068 memory: 2656 loss: 0.5680 top1_acc: 0.7500 top5_acc: 0.9375 loss_cls: 0.5680 2022/12/30 13:17:06 - mmengine - INFO - Epoch(train) [3][ 300/1567] lr: 9.5445e-02 eta: 1:07:51 time: 0.1981 data_time: 0.0069 memory: 2656 loss: 0.3961 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.3961 2022/12/30 13:17:24 - mmengine - INFO - Epoch(train) [3][ 400/1567] lr: 9.5180e-02 eta: 1:07:29 time: 0.1796 data_time: 0.0073 memory: 2656 loss: 0.4926 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.4926 2022/12/30 13:17:43 - mmengine - INFO - Epoch(train) [3][ 500/1567] lr: 9.4908e-02 eta: 1:07:09 time: 0.1762 data_time: 0.0076 memory: 2656 loss: 0.4916 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.4916 2022/12/30 13:18:01 - mmengine - INFO - Epoch(train) [3][ 600/1567] lr: 9.4629e-02 eta: 1:06:50 time: 0.1868 data_time: 0.0070 memory: 2656 loss: 0.5222 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.5222 2022/12/30 13:18:20 - mmengine - INFO - Epoch(train) [3][ 700/1567] lr: 9.4343e-02 eta: 1:06:30 time: 0.1857 data_time: 0.0067 memory: 2656 loss: 0.4513 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.4513 2022/12/30 13:18:39 - mmengine - INFO - Epoch(train) [3][ 800/1567] lr: 9.4050e-02 eta: 1:06:11 time: 0.1851 data_time: 0.0068 memory: 2656 loss: 0.3990 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.3990 2022/12/30 13:18:51 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:18:58 - mmengine - INFO - Epoch(train) [3][ 900/1567] lr: 9.3750e-02 eta: 1:05:53 time: 0.1894 data_time: 0.0068 memory: 2656 loss: 0.6541 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.6541 2022/12/30 13:19:17 - mmengine - INFO - Epoch(train) [3][1000/1567] lr: 9.3444e-02 eta: 1:05:35 time: 0.1929 data_time: 0.0071 memory: 2656 loss: 0.4473 top1_acc: 0.7500 top5_acc: 0.8125 loss_cls: 0.4473 2022/12/30 13:19:36 - mmengine - INFO - Epoch(train) [3][1100/1567] lr: 9.3130e-02 eta: 1:05:17 time: 0.1914 data_time: 0.0068 memory: 2656 loss: 0.4287 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.4287 2022/12/30 13:19:54 - mmengine - INFO - Epoch(train) [3][1200/1567] lr: 9.2810e-02 eta: 1:04:54 time: 0.1754 data_time: 0.0068 memory: 2656 loss: 0.4632 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.4632 2022/12/30 13:20:12 - mmengine - INFO - Epoch(train) [3][1300/1567] lr: 9.2483e-02 eta: 1:04:35 time: 0.1898 data_time: 0.0074 memory: 2656 loss: 0.4949 top1_acc: 0.6875 top5_acc: 0.8750 loss_cls: 0.4949 2022/12/30 13:20:31 - mmengine - INFO - Epoch(train) [3][1400/1567] lr: 9.2149e-02 eta: 1:04:17 time: 0.1880 data_time: 0.0073 memory: 2656 loss: 0.4828 top1_acc: 0.7500 top5_acc: 0.8750 loss_cls: 0.4828 2022/12/30 13:20:50 - mmengine - INFO - Epoch(train) [3][1500/1567] lr: 9.1809e-02 eta: 1:03:57 time: 0.1842 data_time: 0.0068 memory: 2656 loss: 0.5084 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.5084 2022/12/30 13:21:02 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:21:02 - mmengine - INFO - Epoch(train) [3][1567/1567] lr: 9.1577e-02 eta: 1:03:43 time: 0.1765 data_time: 0.0065 memory: 2656 loss: 0.4750 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.4750 2022/12/30 13:21:02 - mmengine - INFO - Saving checkpoint at 3 epochs 2022/12/30 13:21:07 - mmengine - INFO - Epoch(val) [3][100/129] eta: 0:00:01 time: 0.0438 data_time: 0.0126 memory: 378 2022/12/30 13:21:08 - mmengine - INFO - Epoch(val) [3][129/129] acc/top1: 0.7608 acc/top5: 0.9558 acc/mean1: 0.7607 2022/12/30 13:21:08 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_2.pth is removed 2022/12/30 13:21:08 - mmengine - INFO - The best checkpoint with 0.7608 acc/top1 at 3 epoch is saved to best_acc/top1_epoch_3.pth. 2022/12/30 13:21:27 - mmengine - INFO - Epoch(train) [4][ 100/1567] lr: 9.1226e-02 eta: 1:03:23 time: 0.1849 data_time: 0.0070 memory: 2656 loss: 0.5306 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.5306 2022/12/30 13:21:46 - mmengine - INFO - Epoch(train) [4][ 200/1567] lr: 9.0868e-02 eta: 1:03:04 time: 0.1853 data_time: 0.0067 memory: 2656 loss: 0.4650 top1_acc: 0.8125 top5_acc: 0.9375 loss_cls: 0.4650 2022/12/30 13:22:04 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:22:04 - mmengine - INFO - Epoch(train) [4][ 300/1567] lr: 9.0504e-02 eta: 1:02:44 time: 0.1751 data_time: 0.0068 memory: 2656 loss: 0.3901 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.3901 2022/12/30 13:22:22 - mmengine - INFO - Epoch(train) [4][ 400/1567] lr: 9.0133e-02 eta: 1:02:23 time: 0.1737 data_time: 0.0067 memory: 2656 loss: 0.4884 top1_acc: 0.8125 top5_acc: 0.9375 loss_cls: 0.4884 2022/12/30 13:22:41 - mmengine - INFO - Epoch(train) [4][ 500/1567] lr: 8.9756e-02 eta: 1:02:05 time: 0.1843 data_time: 0.0068 memory: 2656 loss: 0.4970 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.4970 2022/12/30 13:23:00 - mmengine - INFO - Epoch(train) [4][ 600/1567] lr: 8.9373e-02 eta: 1:01:46 time: 0.1887 data_time: 0.0068 memory: 2656 loss: 0.4613 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.4613 2022/12/30 13:23:18 - mmengine - INFO - Epoch(train) [4][ 700/1567] lr: 8.8984e-02 eta: 1:01:25 time: 0.1822 data_time: 0.0068 memory: 2656 loss: 0.3936 top1_acc: 0.6875 top5_acc: 1.0000 loss_cls: 0.3936 2022/12/30 13:23:36 - mmengine - INFO - Epoch(train) [4][ 800/1567] lr: 8.8589e-02 eta: 1:01:04 time: 0.1790 data_time: 0.0067 memory: 2656 loss: 0.3906 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.3906 2022/12/30 13:23:54 - mmengine - INFO - Epoch(train) [4][ 900/1567] lr: 8.8187e-02 eta: 1:00:44 time: 0.1811 data_time: 0.0076 memory: 2656 loss: 0.4673 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.4673 2022/12/30 13:24:13 - mmengine - INFO - Epoch(train) [4][1000/1567] lr: 8.7780e-02 eta: 1:00:25 time: 0.1777 data_time: 0.0074 memory: 2656 loss: 0.4367 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.4367 2022/12/30 13:24:32 - mmengine - INFO - Epoch(train) [4][1100/1567] lr: 8.7367e-02 eta: 1:00:06 time: 0.1838 data_time: 0.0067 memory: 2656 loss: 0.3389 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3389 2022/12/30 13:24:50 - mmengine - INFO - Epoch(train) [4][1200/1567] lr: 8.6947e-02 eta: 0:59:45 time: 0.1774 data_time: 0.0067 memory: 2656 loss: 0.2905 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2905 2022/12/30 13:25:08 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:25:08 - mmengine - INFO - Epoch(train) [4][1300/1567] lr: 8.6522e-02 eta: 0:59:25 time: 0.1864 data_time: 0.0069 memory: 2656 loss: 0.3636 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.3636 2022/12/30 13:25:27 - mmengine - INFO - Epoch(train) [4][1400/1567] lr: 8.6092e-02 eta: 0:59:08 time: 0.1937 data_time: 0.0067 memory: 2656 loss: 0.4322 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.4322 2022/12/30 13:25:46 - mmengine - INFO - Epoch(train) [4][1500/1567] lr: 8.5655e-02 eta: 0:58:50 time: 0.1884 data_time: 0.0067 memory: 2656 loss: 0.4232 top1_acc: 0.8750 top5_acc: 0.8750 loss_cls: 0.4232 2022/12/30 13:25:59 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:25:59 - mmengine - INFO - Epoch(train) [4][1567/1567] lr: 8.5360e-02 eta: 0:58:38 time: 0.1908 data_time: 0.0068 memory: 2656 loss: 0.5901 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.5901 2022/12/30 13:25:59 - mmengine - INFO - Saving checkpoint at 4 epochs 2022/12/30 13:26:04 - mmengine - INFO - Epoch(val) [4][100/129] eta: 0:00:01 time: 0.0431 data_time: 0.0111 memory: 378 2022/12/30 13:26:05 - mmengine - INFO - Epoch(val) [4][129/129] acc/top1: 0.7451 acc/top5: 0.9432 acc/mean1: 0.7451 2022/12/30 13:26:24 - mmengine - INFO - Epoch(train) [5][ 100/1567] lr: 8.4914e-02 eta: 0:58:19 time: 0.1826 data_time: 0.0069 memory: 2656 loss: 0.4166 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.4166 2022/12/30 13:26:43 - mmengine - INFO - Epoch(train) [5][ 200/1567] lr: 8.4463e-02 eta: 0:58:01 time: 0.1851 data_time: 0.0066 memory: 2656 loss: 0.4548 top1_acc: 0.7500 top5_acc: 0.9375 loss_cls: 0.4548 2022/12/30 13:27:01 - mmengine - INFO - Epoch(train) [5][ 300/1567] lr: 8.4006e-02 eta: 0:57:40 time: 0.1816 data_time: 0.0067 memory: 2656 loss: 0.4129 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.4129 2022/12/30 13:27:20 - mmengine - INFO - Epoch(train) [5][ 400/1567] lr: 8.3544e-02 eta: 0:57:22 time: 0.1907 data_time: 0.0066 memory: 2656 loss: 0.3983 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3983 2022/12/30 13:27:38 - mmengine - INFO - Epoch(train) [5][ 500/1567] lr: 8.3077e-02 eta: 0:57:02 time: 0.1827 data_time: 0.0074 memory: 2656 loss: 0.3638 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.3638 2022/12/30 13:27:56 - mmengine - INFO - Epoch(train) [5][ 600/1567] lr: 8.2605e-02 eta: 0:56:43 time: 0.1895 data_time: 0.0067 memory: 2656 loss: 0.3901 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3901 2022/12/30 13:28:15 - mmengine - INFO - Epoch(train) [5][ 700/1567] lr: 8.2127e-02 eta: 0:56:24 time: 0.1850 data_time: 0.0068 memory: 2656 loss: 0.5171 top1_acc: 0.6875 top5_acc: 0.9375 loss_cls: 0.5171 2022/12/30 13:28:21 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:28:34 - mmengine - INFO - Epoch(train) [5][ 800/1567] lr: 8.1645e-02 eta: 0:56:06 time: 0.1945 data_time: 0.0066 memory: 2656 loss: 0.4190 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.4190 2022/12/30 13:28:54 - mmengine - INFO - Epoch(train) [5][ 900/1567] lr: 8.1157e-02 eta: 0:55:50 time: 0.1996 data_time: 0.0067 memory: 2656 loss: 0.4007 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.4007 2022/12/30 13:29:11 - mmengine - INFO - Epoch(train) [5][1000/1567] lr: 8.0665e-02 eta: 0:55:29 time: 0.1706 data_time: 0.0067 memory: 2656 loss: 0.3181 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3181 2022/12/30 13:29:30 - mmengine - INFO - Epoch(train) [5][1100/1567] lr: 8.0167e-02 eta: 0:55:10 time: 0.1830 data_time: 0.0071 memory: 2656 loss: 0.3494 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.3494 2022/12/30 13:29:48 - mmengine - INFO - Epoch(train) [5][1200/1567] lr: 7.9665e-02 eta: 0:54:50 time: 0.1816 data_time: 0.0067 memory: 2656 loss: 0.3969 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.3969 2022/12/30 13:30:06 - mmengine - INFO - Epoch(train) [5][1300/1567] lr: 7.9159e-02 eta: 0:54:30 time: 0.1790 data_time: 0.0069 memory: 2656 loss: 0.3732 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.3732 2022/12/30 13:30:25 - mmengine - INFO - Epoch(train) [5][1400/1567] lr: 7.8647e-02 eta: 0:54:10 time: 0.1948 data_time: 0.0073 memory: 2656 loss: 0.3584 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.3584 2022/12/30 13:30:43 - mmengine - INFO - Epoch(train) [5][1500/1567] lr: 7.8132e-02 eta: 0:53:52 time: 0.1774 data_time: 0.0067 memory: 2656 loss: 0.3979 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3979 2022/12/30 13:30:56 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:30:56 - mmengine - INFO - Epoch(train) [5][1567/1567] lr: 7.7784e-02 eta: 0:53:39 time: 0.1838 data_time: 0.0065 memory: 2656 loss: 0.5356 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.5356 2022/12/30 13:30:56 - mmengine - INFO - Saving checkpoint at 5 epochs 2022/12/30 13:31:00 - mmengine - INFO - Epoch(val) [5][100/129] eta: 0:00:01 time: 0.0430 data_time: 0.0089 memory: 378 2022/12/30 13:31:02 - mmengine - INFO - Epoch(val) [5][129/129] acc/top1: 0.7937 acc/top5: 0.9627 acc/mean1: 0.7936 2022/12/30 13:31:02 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_3.pth is removed 2022/12/30 13:31:02 - mmengine - INFO - The best checkpoint with 0.7937 acc/top1 at 5 epoch is saved to best_acc/top1_epoch_5.pth. 2022/12/30 13:31:21 - mmengine - INFO - Epoch(train) [6][ 100/1567] lr: 7.7261e-02 eta: 0:53:20 time: 0.1844 data_time: 0.0067 memory: 2656 loss: 0.3793 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3793 2022/12/30 13:31:33 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:31:40 - mmengine - INFO - Epoch(train) [6][ 200/1567] lr: 7.6733e-02 eta: 0:53:01 time: 0.1906 data_time: 0.0067 memory: 2656 loss: 0.3733 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3733 2022/12/30 13:31:57 - mmengine - INFO - Epoch(train) [6][ 300/1567] lr: 7.6202e-02 eta: 0:52:41 time: 0.1702 data_time: 0.0067 memory: 2656 loss: 0.3738 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3738 2022/12/30 13:32:16 - mmengine - INFO - Epoch(train) [6][ 400/1567] lr: 7.5666e-02 eta: 0:52:21 time: 0.1845 data_time: 0.0070 memory: 2656 loss: 0.3424 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3424 2022/12/30 13:32:34 - mmengine - INFO - Epoch(train) [6][ 500/1567] lr: 7.5126e-02 eta: 0:52:02 time: 0.1874 data_time: 0.0073 memory: 2656 loss: 0.3214 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3214 2022/12/30 13:32:52 - mmengine - INFO - Epoch(train) [6][ 600/1567] lr: 7.4583e-02 eta: 0:51:42 time: 0.1782 data_time: 0.0069 memory: 2656 loss: 0.3354 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.3354 2022/12/30 13:33:10 - mmengine - INFO - Epoch(train) [6][ 700/1567] lr: 7.4035e-02 eta: 0:51:23 time: 0.1870 data_time: 0.0072 memory: 2656 loss: 0.4306 top1_acc: 0.6875 top5_acc: 0.9375 loss_cls: 0.4306 2022/12/30 13:33:29 - mmengine - INFO - Epoch(train) [6][ 800/1567] lr: 7.3484e-02 eta: 0:51:04 time: 0.1996 data_time: 0.0072 memory: 2656 loss: 0.3250 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.3250 2022/12/30 13:33:48 - mmengine - INFO - Epoch(train) [6][ 900/1567] lr: 7.2929e-02 eta: 0:50:46 time: 0.1777 data_time: 0.0067 memory: 2656 loss: 0.3472 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3472 2022/12/30 13:34:06 - mmengine - INFO - Epoch(train) [6][1000/1567] lr: 7.2371e-02 eta: 0:50:27 time: 0.1850 data_time: 0.0066 memory: 2656 loss: 0.2959 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2959 2022/12/30 13:34:24 - mmengine - INFO - Epoch(train) [6][1100/1567] lr: 7.1809e-02 eta: 0:50:07 time: 0.1861 data_time: 0.0069 memory: 2656 loss: 0.2495 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2495 2022/12/30 13:34:37 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:34:43 - mmengine - INFO - Epoch(train) [6][1200/1567] lr: 7.1243e-02 eta: 0:49:49 time: 0.1831 data_time: 0.0073 memory: 2656 loss: 0.3279 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3279 2022/12/30 13:35:02 - mmengine - INFO - Epoch(train) [6][1300/1567] lr: 7.0674e-02 eta: 0:49:30 time: 0.1925 data_time: 0.0067 memory: 2656 loss: 0.3654 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3654 2022/12/30 13:35:20 - mmengine - INFO - Epoch(train) [6][1400/1567] lr: 7.0102e-02 eta: 0:49:11 time: 0.1777 data_time: 0.0067 memory: 2656 loss: 0.2969 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2969 2022/12/30 13:35:38 - mmengine - INFO - Epoch(train) [6][1500/1567] lr: 6.9527e-02 eta: 0:48:52 time: 0.1917 data_time: 0.0067 memory: 2656 loss: 0.3311 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3311 2022/12/30 13:35:51 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:35:51 - mmengine - INFO - Epoch(train) [6][1567/1567] lr: 6.9140e-02 eta: 0:48:39 time: 0.1807 data_time: 0.0065 memory: 2656 loss: 0.4519 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.4519 2022/12/30 13:35:51 - mmengine - INFO - Saving checkpoint at 6 epochs 2022/12/30 13:35:55 - mmengine - INFO - Epoch(val) [6][100/129] eta: 0:00:01 time: 0.0407 data_time: 0.0100 memory: 378 2022/12/30 13:35:57 - mmengine - INFO - Epoch(val) [6][129/129] acc/top1: 0.7913 acc/top5: 0.9611 acc/mean1: 0.7911 2022/12/30 13:36:16 - mmengine - INFO - Epoch(train) [7][ 100/1567] lr: 6.8560e-02 eta: 0:48:21 time: 0.1869 data_time: 0.0066 memory: 2656 loss: 0.2820 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.2820 2022/12/30 13:36:35 - mmengine - INFO - Epoch(train) [7][ 200/1567] lr: 6.7976e-02 eta: 0:48:03 time: 0.1881 data_time: 0.0073 memory: 2656 loss: 0.2821 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2821 2022/12/30 13:36:53 - mmengine - INFO - Epoch(train) [7][ 300/1567] lr: 6.7390e-02 eta: 0:47:44 time: 0.1813 data_time: 0.0068 memory: 2656 loss: 0.3281 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3281 2022/12/30 13:37:12 - mmengine - INFO - Epoch(train) [7][ 400/1567] lr: 6.6802e-02 eta: 0:47:25 time: 0.1820 data_time: 0.0067 memory: 2656 loss: 0.3798 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.3798 2022/12/30 13:37:30 - mmengine - INFO - Epoch(train) [7][ 500/1567] lr: 6.6210e-02 eta: 0:47:06 time: 0.1834 data_time: 0.0067 memory: 2656 loss: 0.3193 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3193 2022/12/30 13:37:48 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:37:48 - mmengine - INFO - Epoch(train) [7][ 600/1567] lr: 6.5616e-02 eta: 0:46:47 time: 0.1806 data_time: 0.0073 memory: 2656 loss: 0.3271 top1_acc: 0.8125 top5_acc: 0.9375 loss_cls: 0.3271 2022/12/30 13:38:07 - mmengine - INFO - Epoch(train) [7][ 700/1567] lr: 6.5020e-02 eta: 0:46:28 time: 0.1848 data_time: 0.0066 memory: 2656 loss: 0.2862 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2862 2022/12/30 13:38:26 - mmengine - INFO - Epoch(train) [7][ 800/1567] lr: 6.4421e-02 eta: 0:46:10 time: 0.1846 data_time: 0.0070 memory: 2656 loss: 0.2413 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2413 2022/12/30 13:38:44 - mmengine - INFO - Epoch(train) [7][ 900/1567] lr: 6.3820e-02 eta: 0:45:50 time: 0.1750 data_time: 0.0068 memory: 2656 loss: 0.3902 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.3902 2022/12/30 13:39:02 - mmengine - INFO - Epoch(train) [7][1000/1567] lr: 6.3217e-02 eta: 0:45:30 time: 0.1871 data_time: 0.0067 memory: 2656 loss: 0.2926 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2926 2022/12/30 13:39:20 - mmengine - INFO - Epoch(train) [7][1100/1567] lr: 6.2612e-02 eta: 0:45:12 time: 0.1796 data_time: 0.0071 memory: 2656 loss: 0.2479 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2479 2022/12/30 13:39:38 - mmengine - INFO - Epoch(train) [7][1200/1567] lr: 6.2005e-02 eta: 0:44:52 time: 0.1734 data_time: 0.0067 memory: 2656 loss: 0.2979 top1_acc: 0.7500 top5_acc: 0.9375 loss_cls: 0.2979 2022/12/30 13:39:56 - mmengine - INFO - Epoch(train) [7][1300/1567] lr: 6.1396e-02 eta: 0:44:33 time: 0.1755 data_time: 0.0069 memory: 2656 loss: 0.3087 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.3087 2022/12/30 13:40:14 - mmengine - INFO - Epoch(train) [7][1400/1567] lr: 6.0785e-02 eta: 0:44:14 time: 0.1845 data_time: 0.0068 memory: 2656 loss: 0.2345 top1_acc: 0.7500 top5_acc: 1.0000 loss_cls: 0.2345 2022/12/30 13:40:33 - mmengine - INFO - Epoch(train) [7][1500/1567] lr: 6.0172e-02 eta: 0:43:55 time: 0.1830 data_time: 0.0068 memory: 2656 loss: 0.2617 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2617 2022/12/30 13:40:45 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:40:45 - mmengine - INFO - Epoch(train) [7][1567/1567] lr: 5.9761e-02 eta: 0:43:42 time: 0.1693 data_time: 0.0065 memory: 2656 loss: 0.4755 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.4755 2022/12/30 13:40:45 - mmengine - INFO - Saving checkpoint at 7 epochs 2022/12/30 13:40:49 - mmengine - INFO - Epoch(val) [7][100/129] eta: 0:00:01 time: 0.0403 data_time: 0.0071 memory: 378 2022/12/30 13:40:51 - mmengine - INFO - Epoch(val) [7][129/129] acc/top1: 0.8253 acc/top5: 0.9672 acc/mean1: 0.8252 2022/12/30 13:40:51 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_5.pth is removed 2022/12/30 13:40:51 - mmengine - INFO - The best checkpoint with 0.8253 acc/top1 at 7 epoch is saved to best_acc/top1_epoch_7.pth. 2022/12/30 13:40:57 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:41:10 - mmengine - INFO - Epoch(train) [8][ 100/1567] lr: 5.9145e-02 eta: 0:43:23 time: 0.1818 data_time: 0.0068 memory: 2656 loss: 0.3807 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.3807 2022/12/30 13:41:28 - mmengine - INFO - Epoch(train) [8][ 200/1567] lr: 5.8529e-02 eta: 0:43:04 time: 0.1946 data_time: 0.0067 memory: 2656 loss: 0.2643 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2643 2022/12/30 13:41:46 - mmengine - INFO - Epoch(train) [8][ 300/1567] lr: 5.7911e-02 eta: 0:42:45 time: 0.1807 data_time: 0.0067 memory: 2656 loss: 0.2691 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2691 2022/12/30 13:42:04 - mmengine - INFO - Epoch(train) [8][ 400/1567] lr: 5.7292e-02 eta: 0:42:26 time: 0.1718 data_time: 0.0066 memory: 2656 loss: 0.2146 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.2146 2022/12/30 13:42:23 - mmengine - INFO - Epoch(train) [8][ 500/1567] lr: 5.6671e-02 eta: 0:42:07 time: 0.1743 data_time: 0.0067 memory: 2656 loss: 0.3102 top1_acc: 0.7500 top5_acc: 0.9375 loss_cls: 0.3102 2022/12/30 13:42:41 - mmengine - INFO - Epoch(train) [8][ 600/1567] lr: 5.6050e-02 eta: 0:41:48 time: 0.1854 data_time: 0.0066 memory: 2656 loss: 0.2711 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.2711 2022/12/30 13:42:59 - mmengine - INFO - Epoch(train) [8][ 700/1567] lr: 5.5427e-02 eta: 0:41:29 time: 0.1829 data_time: 0.0067 memory: 2656 loss: 0.2136 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2136 2022/12/30 13:43:18 - mmengine - INFO - Epoch(train) [8][ 800/1567] lr: 5.4804e-02 eta: 0:41:11 time: 0.1922 data_time: 0.0067 memory: 2656 loss: 0.2582 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2582 2022/12/30 13:43:36 - mmengine - INFO - Epoch(train) [8][ 900/1567] lr: 5.4180e-02 eta: 0:40:52 time: 0.1721 data_time: 0.0066 memory: 2656 loss: 0.2927 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.2927 2022/12/30 13:43:55 - mmengine - INFO - Epoch(train) [8][1000/1567] lr: 5.3556e-02 eta: 0:40:33 time: 0.1758 data_time: 0.0067 memory: 2656 loss: 0.2210 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.2210 2022/12/30 13:44:01 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:44:13 - mmengine - INFO - Epoch(train) [8][1100/1567] lr: 5.2930e-02 eta: 0:40:14 time: 0.1869 data_time: 0.0068 memory: 2656 loss: 0.2103 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2103 2022/12/30 13:44:32 - mmengine - INFO - Epoch(train) [8][1200/1567] lr: 5.2305e-02 eta: 0:39:56 time: 0.1775 data_time: 0.0074 memory: 2656 loss: 0.2408 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2408 2022/12/30 13:44:50 - mmengine - INFO - Epoch(train) [8][1300/1567] lr: 5.1679e-02 eta: 0:39:37 time: 0.1840 data_time: 0.0067 memory: 2656 loss: 0.2569 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2569 2022/12/30 13:45:09 - mmengine - INFO - Epoch(train) [8][1400/1567] lr: 5.1052e-02 eta: 0:39:19 time: 0.1830 data_time: 0.0072 memory: 2656 loss: 0.2073 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2073 2022/12/30 13:45:27 - mmengine - INFO - Epoch(train) [8][1500/1567] lr: 5.0426e-02 eta: 0:38:59 time: 0.1793 data_time: 0.0068 memory: 2656 loss: 0.2467 top1_acc: 0.8750 top5_acc: 0.9375 loss_cls: 0.2467 2022/12/30 13:45:38 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:45:38 - mmengine - INFO - Epoch(train) [8][1567/1567] lr: 5.0006e-02 eta: 0:38:46 time: 0.1689 data_time: 0.0065 memory: 2656 loss: 0.3932 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.3932 2022/12/30 13:45:38 - mmengine - INFO - Saving checkpoint at 8 epochs 2022/12/30 13:45:43 - mmengine - INFO - Epoch(val) [8][100/129] eta: 0:00:01 time: 0.0402 data_time: 0.0070 memory: 378 2022/12/30 13:45:45 - mmengine - INFO - Epoch(val) [8][129/129] acc/top1: 0.8435 acc/top5: 0.9731 acc/mean1: 0.8433 2022/12/30 13:45:45 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_7.pth is removed 2022/12/30 13:45:45 - mmengine - INFO - The best checkpoint with 0.8435 acc/top1 at 8 epoch is saved to best_acc/top1_epoch_8.pth. 2022/12/30 13:46:03 - mmengine - INFO - Epoch(train) [9][ 100/1567] lr: 4.9380e-02 eta: 0:38:27 time: 0.1747 data_time: 0.0075 memory: 2656 loss: 0.2843 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2843 2022/12/30 13:46:22 - mmengine - INFO - Epoch(train) [9][ 200/1567] lr: 4.8753e-02 eta: 0:38:09 time: 0.1974 data_time: 0.0075 memory: 2656 loss: 0.2592 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2592 2022/12/30 13:46:40 - mmengine - INFO - Epoch(train) [9][ 300/1567] lr: 4.8127e-02 eta: 0:37:50 time: 0.1729 data_time: 0.0072 memory: 2656 loss: 0.2443 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2443 2022/12/30 13:46:58 - mmengine - INFO - Epoch(train) [9][ 400/1567] lr: 4.7501e-02 eta: 0:37:30 time: 0.1726 data_time: 0.0066 memory: 2656 loss: 0.2272 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2272 2022/12/30 13:47:10 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:47:17 - mmengine - INFO - Epoch(train) [9][ 500/1567] lr: 4.6876e-02 eta: 0:37:12 time: 0.1937 data_time: 0.0077 memory: 2656 loss: 0.2198 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2198 2022/12/30 13:47:35 - mmengine - INFO - Epoch(train) [9][ 600/1567] lr: 4.6251e-02 eta: 0:36:54 time: 0.1829 data_time: 0.0067 memory: 2656 loss: 0.2221 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2221 2022/12/30 13:47:54 - mmengine - INFO - Epoch(train) [9][ 700/1567] lr: 4.5626e-02 eta: 0:36:35 time: 0.1862 data_time: 0.0071 memory: 2656 loss: 0.2321 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.2321 2022/12/30 13:48:13 - mmengine - INFO - Epoch(train) [9][ 800/1567] lr: 4.5003e-02 eta: 0:36:17 time: 0.1989 data_time: 0.0075 memory: 2656 loss: 0.2238 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.2238 2022/12/30 13:48:31 - mmengine - INFO - Epoch(train) [9][ 900/1567] lr: 4.4380e-02 eta: 0:35:58 time: 0.1787 data_time: 0.0067 memory: 2656 loss: 0.1788 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.1788 2022/12/30 13:48:49 - mmengine - INFO - Epoch(train) [9][1000/1567] lr: 4.3757e-02 eta: 0:35:39 time: 0.1930 data_time: 0.0076 memory: 2656 loss: 0.2901 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.2901 2022/12/30 13:49:08 - mmengine - INFO - Epoch(train) [9][1100/1567] lr: 4.3136e-02 eta: 0:35:21 time: 0.1801 data_time: 0.0071 memory: 2656 loss: 0.1582 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1582 2022/12/30 13:49:26 - mmengine - INFO - Epoch(train) [9][1200/1567] lr: 4.2516e-02 eta: 0:35:02 time: 0.1900 data_time: 0.0068 memory: 2656 loss: 0.1462 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1462 2022/12/30 13:49:45 - mmengine - INFO - Epoch(train) [9][1300/1567] lr: 4.1897e-02 eta: 0:34:44 time: 0.1864 data_time: 0.0071 memory: 2656 loss: 0.1865 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.1865 2022/12/30 13:50:04 - mmengine - INFO - Epoch(train) [9][1400/1567] lr: 4.1280e-02 eta: 0:34:25 time: 0.1839 data_time: 0.0068 memory: 2656 loss: 0.2534 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.2534 2022/12/30 13:50:15 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:50:22 - mmengine - INFO - Epoch(train) [9][1500/1567] lr: 4.0664e-02 eta: 0:34:06 time: 0.1785 data_time: 0.0069 memory: 2656 loss: 0.1909 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.1909 2022/12/30 13:50:34 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:50:34 - mmengine - INFO - Epoch(train) [9][1567/1567] lr: 4.0252e-02 eta: 0:33:54 time: 0.1745 data_time: 0.0072 memory: 2656 loss: 0.3672 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.3672 2022/12/30 13:50:34 - mmengine - INFO - Saving checkpoint at 9 epochs 2022/12/30 13:50:39 - mmengine - INFO - Epoch(val) [9][100/129] eta: 0:00:01 time: 0.0407 data_time: 0.0091 memory: 378 2022/12/30 13:50:41 - mmengine - INFO - Epoch(val) [9][129/129] acc/top1: 0.8479 acc/top5: 0.9711 acc/mean1: 0.8479 2022/12/30 13:50:41 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_8.pth is removed 2022/12/30 13:50:41 - mmengine - INFO - The best checkpoint with 0.8479 acc/top1 at 9 epoch is saved to best_acc/top1_epoch_9.pth. 2022/12/30 13:51:00 - mmengine - INFO - Epoch(train) [10][ 100/1567] lr: 3.9638e-02 eta: 0:33:35 time: 0.1863 data_time: 0.0068 memory: 2656 loss: 0.1550 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1550 2022/12/30 13:51:18 - mmengine - INFO - Epoch(train) [10][ 200/1567] lr: 3.9026e-02 eta: 0:33:16 time: 0.1812 data_time: 0.0067 memory: 2656 loss: 0.1825 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.1825 2022/12/30 13:51:36 - mmengine - INFO - Epoch(train) [10][ 300/1567] lr: 3.8415e-02 eta: 0:32:58 time: 0.1844 data_time: 0.0067 memory: 2656 loss: 0.2177 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2177 2022/12/30 13:51:55 - mmengine - INFO - Epoch(train) [10][ 400/1567] lr: 3.7807e-02 eta: 0:32:39 time: 0.1768 data_time: 0.0067 memory: 2656 loss: 0.0861 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0861 2022/12/30 13:52:13 - mmengine - INFO - Epoch(train) [10][ 500/1567] lr: 3.7200e-02 eta: 0:32:20 time: 0.1867 data_time: 0.0073 memory: 2656 loss: 0.1558 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1558 2022/12/30 13:52:31 - mmengine - INFO - Epoch(train) [10][ 600/1567] lr: 3.6596e-02 eta: 0:32:02 time: 0.1858 data_time: 0.0069 memory: 2656 loss: 0.1492 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1492 2022/12/30 13:52:49 - mmengine - INFO - Epoch(train) [10][ 700/1567] lr: 3.5993e-02 eta: 0:31:43 time: 0.1745 data_time: 0.0066 memory: 2656 loss: 0.1693 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.1693 2022/12/30 13:53:08 - mmengine - INFO - Epoch(train) [10][ 800/1567] lr: 3.5393e-02 eta: 0:31:24 time: 0.1930 data_time: 0.0068 memory: 2656 loss: 0.2019 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2019 2022/12/30 13:53:26 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:53:26 - mmengine - INFO - Epoch(train) [10][ 900/1567] lr: 3.4795e-02 eta: 0:31:06 time: 0.1801 data_time: 0.0068 memory: 2656 loss: 0.2025 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.2025 2022/12/30 13:53:44 - mmengine - INFO - Epoch(train) [10][1000/1567] lr: 3.4199e-02 eta: 0:30:46 time: 0.1710 data_time: 0.0073 memory: 2656 loss: 0.1570 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1570 2022/12/30 13:54:01 - mmengine - INFO - Epoch(train) [10][1100/1567] lr: 3.3606e-02 eta: 0:30:27 time: 0.1775 data_time: 0.0071 memory: 2656 loss: 0.1526 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1526 2022/12/30 13:54:19 - mmengine - INFO - Epoch(train) [10][1200/1567] lr: 3.3015e-02 eta: 0:30:08 time: 0.1878 data_time: 0.0076 memory: 2656 loss: 0.1744 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.1744 2022/12/30 13:54:38 - mmengine - INFO - Epoch(train) [10][1300/1567] lr: 3.2428e-02 eta: 0:29:50 time: 0.1766 data_time: 0.0067 memory: 2656 loss: 0.1220 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1220 2022/12/30 13:54:57 - mmengine - INFO - Epoch(train) [10][1400/1567] lr: 3.1842e-02 eta: 0:29:32 time: 0.1901 data_time: 0.0076 memory: 2656 loss: 0.1356 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1356 2022/12/30 13:55:15 - mmengine - INFO - Epoch(train) [10][1500/1567] lr: 3.1260e-02 eta: 0:29:13 time: 0.1770 data_time: 0.0073 memory: 2656 loss: 0.1367 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1367 2022/12/30 13:55:28 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:55:28 - mmengine - INFO - Epoch(train) [10][1567/1567] lr: 3.0872e-02 eta: 0:29:01 time: 0.1836 data_time: 0.0067 memory: 2656 loss: 0.4284 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.4284 2022/12/30 13:55:28 - mmengine - INFO - Saving checkpoint at 10 epochs 2022/12/30 13:55:33 - mmengine - INFO - Epoch(val) [10][100/129] eta: 0:00:01 time: 0.0397 data_time: 0.0080 memory: 378 2022/12/30 13:55:34 - mmengine - INFO - Epoch(val) [10][129/129] acc/top1: 0.8599 acc/top5: 0.9754 acc/mean1: 0.8598 2022/12/30 13:55:34 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_9.pth is removed 2022/12/30 13:55:35 - mmengine - INFO - The best checkpoint with 0.8599 acc/top1 at 10 epoch is saved to best_acc/top1_epoch_10.pth. 2022/12/30 13:55:53 - mmengine - INFO - Epoch(train) [11][ 100/1567] lr: 3.0294e-02 eta: 0:28:42 time: 0.1860 data_time: 0.0067 memory: 2656 loss: 0.1128 top1_acc: 0.8125 top5_acc: 1.0000 loss_cls: 0.1128 2022/12/30 13:56:12 - mmengine - INFO - Epoch(train) [11][ 200/1567] lr: 2.9720e-02 eta: 0:28:24 time: 0.1775 data_time: 0.0068 memory: 2656 loss: 0.0886 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.0886 2022/12/30 13:56:31 - mmengine - INFO - Epoch(train) [11][ 300/1567] lr: 2.9149e-02 eta: 0:28:05 time: 0.1860 data_time: 0.0068 memory: 2656 loss: 0.1607 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1607 2022/12/30 13:56:36 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:56:49 - mmengine - INFO - Epoch(train) [11][ 400/1567] lr: 2.8581e-02 eta: 0:27:47 time: 0.1774 data_time: 0.0069 memory: 2656 loss: 0.1192 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.1192 2022/12/30 13:57:07 - mmengine - INFO - Epoch(train) [11][ 500/1567] lr: 2.8017e-02 eta: 0:27:28 time: 0.1742 data_time: 0.0071 memory: 2656 loss: 0.1086 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1086 2022/12/30 13:57:26 - mmengine - INFO - Epoch(train) [11][ 600/1567] lr: 2.7456e-02 eta: 0:27:09 time: 0.1925 data_time: 0.0071 memory: 2656 loss: 0.1375 top1_acc: 0.9375 top5_acc: 0.9375 loss_cls: 0.1375 2022/12/30 13:57:44 - mmengine - INFO - Epoch(train) [11][ 700/1567] lr: 2.6898e-02 eta: 0:26:51 time: 0.1822 data_time: 0.0070 memory: 2656 loss: 0.0935 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.0935 2022/12/30 13:58:03 - mmengine - INFO - Epoch(train) [11][ 800/1567] lr: 2.6345e-02 eta: 0:26:33 time: 0.1872 data_time: 0.0068 memory: 2656 loss: 0.1007 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1007 2022/12/30 13:58:21 - mmengine - INFO - Epoch(train) [11][ 900/1567] lr: 2.5794e-02 eta: 0:26:14 time: 0.1851 data_time: 0.0067 memory: 2656 loss: 0.0954 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.0954 2022/12/30 13:58:40 - mmengine - INFO - Epoch(train) [11][1000/1567] lr: 2.5248e-02 eta: 0:25:55 time: 0.1842 data_time: 0.0074 memory: 2656 loss: 0.1093 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1093 2022/12/30 13:58:58 - mmengine - INFO - Epoch(train) [11][1100/1567] lr: 2.4706e-02 eta: 0:25:37 time: 0.1855 data_time: 0.0069 memory: 2656 loss: 0.0698 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0698 2022/12/30 13:59:16 - mmengine - INFO - Epoch(train) [11][1200/1567] lr: 2.4167e-02 eta: 0:25:18 time: 0.1832 data_time: 0.0072 memory: 2656 loss: 0.1275 top1_acc: 0.8750 top5_acc: 1.0000 loss_cls: 0.1275 2022/12/30 13:59:34 - mmengine - INFO - Epoch(train) [11][1300/1567] lr: 2.3633e-02 eta: 0:24:59 time: 0.1768 data_time: 0.0069 memory: 2656 loss: 0.0960 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.0960 2022/12/30 13:59:40 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 13:59:53 - mmengine - INFO - Epoch(train) [11][1400/1567] lr: 2.3103e-02 eta: 0:24:41 time: 0.1824 data_time: 0.0072 memory: 2656 loss: 0.1090 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1090 2022/12/30 14:00:11 - mmengine - INFO - Epoch(train) [11][1500/1567] lr: 2.2577e-02 eta: 0:24:22 time: 0.1747 data_time: 0.0072 memory: 2656 loss: 0.1023 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.1023 2022/12/30 14:00:23 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:00:23 - mmengine - INFO - Epoch(train) [11][1567/1567] lr: 2.2227e-02 eta: 0:24:09 time: 0.1674 data_time: 0.0066 memory: 2656 loss: 0.2867 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.2867 2022/12/30 14:00:23 - mmengine - INFO - Saving checkpoint at 11 epochs 2022/12/30 14:00:28 - mmengine - INFO - Epoch(val) [11][100/129] eta: 0:00:01 time: 0.0412 data_time: 0.0069 memory: 378 2022/12/30 14:00:29 - mmengine - INFO - Epoch(val) [11][129/129] acc/top1: 0.8649 acc/top5: 0.9753 acc/mean1: 0.8648 2022/12/30 14:00:29 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_10.pth is removed 2022/12/30 14:00:30 - mmengine - INFO - The best checkpoint with 0.8649 acc/top1 at 11 epoch is saved to best_acc/top1_epoch_11.pth. 2022/12/30 14:00:48 - mmengine - INFO - Epoch(train) [12][ 100/1567] lr: 2.1708e-02 eta: 0:23:51 time: 0.1860 data_time: 0.0072 memory: 2656 loss: 0.0709 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.0709 2022/12/30 14:01:06 - mmengine - INFO - Epoch(train) [12][ 200/1567] lr: 2.1194e-02 eta: 0:23:32 time: 0.1891 data_time: 0.0071 memory: 2656 loss: 0.0731 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0731 2022/12/30 14:01:24 - mmengine - INFO - Epoch(train) [12][ 300/1567] lr: 2.0684e-02 eta: 0:23:13 time: 0.1836 data_time: 0.0068 memory: 2656 loss: 0.0621 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0621 2022/12/30 14:01:43 - mmengine - INFO - Epoch(train) [12][ 400/1567] lr: 2.0179e-02 eta: 0:22:55 time: 0.1808 data_time: 0.0067 memory: 2656 loss: 0.0738 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0738 2022/12/30 14:02:01 - mmengine - INFO - Epoch(train) [12][ 500/1567] lr: 1.9678e-02 eta: 0:22:36 time: 0.1804 data_time: 0.0077 memory: 2656 loss: 0.0585 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0585 2022/12/30 14:02:20 - mmengine - INFO - Epoch(train) [12][ 600/1567] lr: 1.9182e-02 eta: 0:22:18 time: 0.1861 data_time: 0.0067 memory: 2656 loss: 0.0541 top1_acc: 0.9375 top5_acc: 1.0000 loss_cls: 0.0541 2022/12/30 14:02:38 - mmengine - INFO - Epoch(train) [12][ 700/1567] lr: 1.8691e-02 eta: 0:21:59 time: 0.1790 data_time: 0.0067 memory: 2656 loss: 0.0286 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0286 2022/12/30 14:02:50 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:02:58 - mmengine - INFO - Epoch(train) [12][ 800/1567] lr: 1.8205e-02 eta: 0:21:41 time: 0.1971 data_time: 0.0072 memory: 2656 loss: 0.0689 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0689 2022/12/30 14:03:16 - mmengine - INFO - Epoch(train) [12][ 900/1567] lr: 1.7724e-02 eta: 0:21:23 time: 0.1883 data_time: 0.0077 memory: 2656 loss: 0.0418 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0418 2022/12/30 14:03:35 - mmengine - INFO - Epoch(train) [12][1000/1567] lr: 1.7248e-02 eta: 0:21:04 time: 0.1864 data_time: 0.0073 memory: 2656 loss: 0.0706 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0706 2022/12/30 14:03:53 - mmengine - INFO - Epoch(train) [12][1100/1567] lr: 1.6778e-02 eta: 0:20:46 time: 0.1782 data_time: 0.0072 memory: 2656 loss: 0.0631 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0631 2022/12/30 14:04:12 - mmengine - INFO - Epoch(train) [12][1200/1567] lr: 1.6312e-02 eta: 0:20:27 time: 0.1863 data_time: 0.0074 memory: 2656 loss: 0.0514 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0514 2022/12/30 14:04:30 - mmengine - INFO - Epoch(train) [12][1300/1567] lr: 1.5852e-02 eta: 0:20:09 time: 0.1810 data_time: 0.0070 memory: 2656 loss: 0.0282 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0282 2022/12/30 14:04:49 - mmengine - INFO - Epoch(train) [12][1400/1567] lr: 1.5397e-02 eta: 0:19:50 time: 0.1747 data_time: 0.0067 memory: 2656 loss: 0.0319 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0319 2022/12/30 14:05:07 - mmengine - INFO - Epoch(train) [12][1500/1567] lr: 1.4947e-02 eta: 0:19:32 time: 0.1771 data_time: 0.0071 memory: 2656 loss: 0.0355 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0355 2022/12/30 14:05:19 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:05:19 - mmengine - INFO - Epoch(train) [12][1567/1567] lr: 1.4649e-02 eta: 0:19:19 time: 0.1834 data_time: 0.0076 memory: 2656 loss: 0.2093 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.2093 2022/12/30 14:05:19 - mmengine - INFO - Saving checkpoint at 12 epochs 2022/12/30 14:05:24 - mmengine - INFO - Epoch(val) [12][100/129] eta: 0:00:01 time: 0.0435 data_time: 0.0079 memory: 378 2022/12/30 14:05:26 - mmengine - INFO - Epoch(val) [12][129/129] acc/top1: 0.8819 acc/top5: 0.9786 acc/mean1: 0.8818 2022/12/30 14:05:26 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_11.pth is removed 2022/12/30 14:05:26 - mmengine - INFO - The best checkpoint with 0.8819 acc/top1 at 12 epoch is saved to best_acc/top1_epoch_12.pth. 2022/12/30 14:05:44 - mmengine - INFO - Epoch(train) [13][ 100/1567] lr: 1.4209e-02 eta: 0:19:00 time: 0.1824 data_time: 0.0067 memory: 2656 loss: 0.0358 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0358 2022/12/30 14:06:02 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:06:02 - mmengine - INFO - Epoch(train) [13][ 200/1567] lr: 1.3774e-02 eta: 0:18:42 time: 0.1818 data_time: 0.0072 memory: 2656 loss: 0.0209 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0209 2022/12/30 14:06:20 - mmengine - INFO - Epoch(train) [13][ 300/1567] lr: 1.3345e-02 eta: 0:18:23 time: 0.1762 data_time: 0.0071 memory: 2656 loss: 0.0458 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0458 2022/12/30 14:06:39 - mmengine - INFO - Epoch(train) [13][ 400/1567] lr: 1.2922e-02 eta: 0:18:05 time: 0.1806 data_time: 0.0074 memory: 2656 loss: 0.0155 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0155 2022/12/30 14:06:57 - mmengine - INFO - Epoch(train) [13][ 500/1567] lr: 1.2505e-02 eta: 0:17:46 time: 0.1813 data_time: 0.0070 memory: 2656 loss: 0.0369 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0369 2022/12/30 14:07:15 - mmengine - INFO - Epoch(train) [13][ 600/1567] lr: 1.2093e-02 eta: 0:17:28 time: 0.1872 data_time: 0.0075 memory: 2656 loss: 0.0259 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0259 2022/12/30 14:07:34 - mmengine - INFO - Epoch(train) [13][ 700/1567] lr: 1.1687e-02 eta: 0:17:09 time: 0.1803 data_time: 0.0067 memory: 2656 loss: 0.0230 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0230 2022/12/30 14:07:52 - mmengine - INFO - Epoch(train) [13][ 800/1567] lr: 1.1288e-02 eta: 0:16:50 time: 0.1890 data_time: 0.0070 memory: 2656 loss: 0.0174 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0174 2022/12/30 14:08:11 - mmengine - INFO - Epoch(train) [13][ 900/1567] lr: 1.0894e-02 eta: 0:16:32 time: 0.1850 data_time: 0.0073 memory: 2656 loss: 0.0209 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0209 2022/12/30 14:08:29 - mmengine - INFO - Epoch(train) [13][1000/1567] lr: 1.0507e-02 eta: 0:16:13 time: 0.1839 data_time: 0.0070 memory: 2656 loss: 0.0264 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0264 2022/12/30 14:08:47 - mmengine - INFO - Epoch(train) [13][1100/1567] lr: 1.0126e-02 eta: 0:15:55 time: 0.1813 data_time: 0.0069 memory: 2656 loss: 0.0195 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0195 2022/12/30 14:09:05 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:09:05 - mmengine - INFO - Epoch(train) [13][1200/1567] lr: 9.7512e-03 eta: 0:15:36 time: 0.1794 data_time: 0.0068 memory: 2656 loss: 0.0115 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0115 2022/12/30 14:09:23 - mmengine - INFO - Epoch(train) [13][1300/1567] lr: 9.3826e-03 eta: 0:15:18 time: 0.1774 data_time: 0.0077 memory: 2656 loss: 0.0221 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0221 2022/12/30 14:09:42 - mmengine - INFO - Epoch(train) [13][1400/1567] lr: 9.0204e-03 eta: 0:14:59 time: 0.1909 data_time: 0.0076 memory: 2656 loss: 0.0128 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0128 2022/12/30 14:10:01 - mmengine - INFO - Epoch(train) [13][1500/1567] lr: 8.6647e-03 eta: 0:14:41 time: 0.1944 data_time: 0.0082 memory: 2656 loss: 0.0155 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0155 2022/12/30 14:10:13 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:10:13 - mmengine - INFO - Epoch(train) [13][1567/1567] lr: 8.4300e-03 eta: 0:14:29 time: 0.1822 data_time: 0.0071 memory: 2656 loss: 0.1871 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.1871 2022/12/30 14:10:13 - mmengine - INFO - Saving checkpoint at 13 epochs 2022/12/30 14:10:19 - mmengine - INFO - Epoch(val) [13][100/129] eta: 0:00:01 time: 0.0409 data_time: 0.0067 memory: 378 2022/12/30 14:10:20 - mmengine - INFO - Epoch(val) [13][129/129] acc/top1: 0.8934 acc/top5: 0.9795 acc/mean1: 0.8933 2022/12/30 14:10:20 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_12.pth is removed 2022/12/30 14:10:21 - mmengine - INFO - The best checkpoint with 0.8934 acc/top1 at 13 epoch is saved to best_acc/top1_epoch_13.pth. 2022/12/30 14:10:39 - mmengine - INFO - Epoch(train) [14][ 100/1567] lr: 8.0851e-03 eta: 0:14:10 time: 0.1827 data_time: 0.0067 memory: 2656 loss: 0.0136 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0136 2022/12/30 14:10:58 - mmengine - INFO - Epoch(train) [14][ 200/1567] lr: 7.7469e-03 eta: 0:13:52 time: 0.1914 data_time: 0.0068 memory: 2656 loss: 0.0124 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0124 2022/12/30 14:11:16 - mmengine - INFO - Epoch(train) [14][ 300/1567] lr: 7.4152e-03 eta: 0:13:33 time: 0.1739 data_time: 0.0068 memory: 2656 loss: 0.0101 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0101 2022/12/30 14:11:34 - mmengine - INFO - Epoch(train) [14][ 400/1567] lr: 7.0902e-03 eta: 0:13:14 time: 0.1742 data_time: 0.0068 memory: 2656 loss: 0.0120 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0120 2022/12/30 14:11:52 - mmengine - INFO - Epoch(train) [14][ 500/1567] lr: 6.7720e-03 eta: 0:12:56 time: 0.1860 data_time: 0.0072 memory: 2656 loss: 0.0200 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0200 2022/12/30 14:12:10 - mmengine - INFO - Epoch(train) [14][ 600/1567] lr: 6.4606e-03 eta: 0:12:37 time: 0.1797 data_time: 0.0068 memory: 2656 loss: 0.0163 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0163 2022/12/30 14:12:15 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:12:28 - mmengine - INFO - Epoch(train) [14][ 700/1567] lr: 6.1560e-03 eta: 0:12:19 time: 0.1786 data_time: 0.0068 memory: 2656 loss: 0.0124 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0124 2022/12/30 14:12:46 - mmengine - INFO - Epoch(train) [14][ 800/1567] lr: 5.8582e-03 eta: 0:12:00 time: 0.1776 data_time: 0.0073 memory: 2656 loss: 0.0102 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0102 2022/12/30 14:13:04 - mmengine - INFO - Epoch(train) [14][ 900/1567] lr: 5.5675e-03 eta: 0:11:42 time: 0.1840 data_time: 0.0078 memory: 2656 loss: 0.0111 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0111 2022/12/30 14:13:22 - mmengine - INFO - Epoch(train) [14][1000/1567] lr: 5.2836e-03 eta: 0:11:23 time: 0.1795 data_time: 0.0073 memory: 2656 loss: 0.0070 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0070 2022/12/30 14:13:41 - mmengine - INFO - Epoch(train) [14][1100/1567] lr: 5.0068e-03 eta: 0:11:05 time: 0.1821 data_time: 0.0068 memory: 2656 loss: 0.0081 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0081 2022/12/30 14:13:59 - mmengine - INFO - Epoch(train) [14][1200/1567] lr: 4.7371e-03 eta: 0:10:46 time: 0.1841 data_time: 0.0068 memory: 2656 loss: 0.0083 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0083 2022/12/30 14:14:17 - mmengine - INFO - Epoch(train) [14][1300/1567] lr: 4.4745e-03 eta: 0:10:28 time: 0.1863 data_time: 0.0074 memory: 2656 loss: 0.0126 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0126 2022/12/30 14:14:36 - mmengine - INFO - Epoch(train) [14][1400/1567] lr: 4.2190e-03 eta: 0:10:09 time: 0.1890 data_time: 0.0071 memory: 2656 loss: 0.0105 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0105 2022/12/30 14:14:54 - mmengine - INFO - Epoch(train) [14][1500/1567] lr: 3.9707e-03 eta: 0:09:51 time: 0.1744 data_time: 0.0068 memory: 2656 loss: 0.0077 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0077 2022/12/30 14:15:06 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:15:06 - mmengine - INFO - Epoch(train) [14][1567/1567] lr: 3.8084e-03 eta: 0:09:38 time: 0.1800 data_time: 0.0067 memory: 2656 loss: 0.1745 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.1745 2022/12/30 14:15:06 - mmengine - INFO - Saving checkpoint at 14 epochs 2022/12/30 14:15:12 - mmengine - INFO - Epoch(val) [14][100/129] eta: 0:00:01 time: 0.0407 data_time: 0.0065 memory: 378 2022/12/30 14:15:13 - mmengine - INFO - Epoch(val) [14][129/129] acc/top1: 0.8986 acc/top5: 0.9808 acc/mean1: 0.8986 2022/12/30 14:15:13 - mmengine - INFO - The previous best checkpoint /mnt/petrelfs/daiwenxun/mmlab/mmaction2/work_dirs/stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d/best_acc/top1_epoch_13.pth is removed 2022/12/30 14:15:14 - mmengine - INFO - The best checkpoint with 0.8986 acc/top1 at 14 epoch is saved to best_acc/top1_epoch_14.pth. 2022/12/30 14:15:25 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:15:32 - mmengine - INFO - Epoch(train) [15][ 100/1567] lr: 3.5722e-03 eta: 0:09:20 time: 0.1813 data_time: 0.0074 memory: 2656 loss: 0.0162 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0162 2022/12/30 14:15:50 - mmengine - INFO - Epoch(train) [15][ 200/1567] lr: 3.3433e-03 eta: 0:09:01 time: 0.1836 data_time: 0.0068 memory: 2656 loss: 0.0076 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0076 2022/12/30 14:16:08 - mmengine - INFO - Epoch(train) [15][ 300/1567] lr: 3.1217e-03 eta: 0:08:43 time: 0.1791 data_time: 0.0071 memory: 2656 loss: 0.0088 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0088 2022/12/30 14:16:26 - mmengine - INFO - Epoch(train) [15][ 400/1567] lr: 2.9075e-03 eta: 0:08:24 time: 0.1825 data_time: 0.0069 memory: 2656 loss: 0.0122 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0122 2022/12/30 14:16:45 - mmengine - INFO - Epoch(train) [15][ 500/1567] lr: 2.7007e-03 eta: 0:08:06 time: 0.1912 data_time: 0.0071 memory: 2656 loss: 0.0081 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0081 2022/12/30 14:17:03 - mmengine - INFO - Epoch(train) [15][ 600/1567] lr: 2.5013e-03 eta: 0:07:47 time: 0.1822 data_time: 0.0071 memory: 2656 loss: 0.0091 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0091 2022/12/30 14:17:21 - mmengine - INFO - Epoch(train) [15][ 700/1567] lr: 2.3093e-03 eta: 0:07:29 time: 0.1885 data_time: 0.0070 memory: 2656 loss: 0.0078 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0078 2022/12/30 14:17:39 - mmengine - INFO - Epoch(train) [15][ 800/1567] lr: 2.1249e-03 eta: 0:07:10 time: 0.1856 data_time: 0.0075 memory: 2656 loss: 0.0087 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0087 2022/12/30 14:17:57 - mmengine - INFO - Epoch(train) [15][ 900/1567] lr: 1.9479e-03 eta: 0:06:52 time: 0.1784 data_time: 0.0075 memory: 2656 loss: 0.0118 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0118 2022/12/30 14:18:15 - mmengine - INFO - Epoch(train) [15][1000/1567] lr: 1.7785e-03 eta: 0:06:33 time: 0.1857 data_time: 0.0074 memory: 2656 loss: 0.0110 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0110 2022/12/30 14:18:26 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:18:33 - mmengine - INFO - Epoch(train) [15][1100/1567] lr: 1.6167e-03 eta: 0:06:15 time: 0.1825 data_time: 0.0070 memory: 2656 loss: 0.0088 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0088 2022/12/30 14:18:51 - mmengine - INFO - Epoch(train) [15][1200/1567] lr: 1.4625e-03 eta: 0:05:56 time: 0.1779 data_time: 0.0069 memory: 2656 loss: 0.0094 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0094 2022/12/30 14:19:09 - mmengine - INFO - Epoch(train) [15][1300/1567] lr: 1.3159e-03 eta: 0:05:38 time: 0.1809 data_time: 0.0069 memory: 2656 loss: 0.0079 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0079 2022/12/30 14:19:28 - mmengine - INFO - Epoch(train) [15][1400/1567] lr: 1.1769e-03 eta: 0:05:19 time: 0.1886 data_time: 0.0073 memory: 2656 loss: 0.0094 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0094 2022/12/30 14:19:46 - mmengine - INFO - Epoch(train) [15][1500/1567] lr: 1.0456e-03 eta: 0:05:01 time: 0.1893 data_time: 0.0070 memory: 2656 loss: 0.0107 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0107 2022/12/30 14:19:59 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:19:59 - mmengine - INFO - Epoch(train) [15][1567/1567] lr: 9.6196e-04 eta: 0:04:49 time: 0.1803 data_time: 0.0067 memory: 2656 loss: 0.2166 top1_acc: 0.0000 top5_acc: 0.0000 loss_cls: 0.2166 2022/12/30 14:19:59 - mmengine - INFO - Saving checkpoint at 15 epochs 2022/12/30 14:20:05 - mmengine - INFO - Epoch(val) [15][100/129] eta: 0:00:01 time: 0.0426 data_time: 0.0076 memory: 378 2022/12/30 14:20:06 - mmengine - INFO - Epoch(val) [15][129/129] acc/top1: 0.8979 acc/top5: 0.9803 acc/mean1: 0.8978 2022/12/30 14:20:24 - mmengine - INFO - Epoch(train) [16][ 100/1567] lr: 8.4351e-04 eta: 0:04:30 time: 0.1868 data_time: 0.0068 memory: 2656 loss: 0.0115 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0115 2022/12/30 14:20:43 - mmengine - INFO - Epoch(train) [16][ 200/1567] lr: 7.3277e-04 eta: 0:04:12 time: 0.1874 data_time: 0.0070 memory: 2656 loss: 0.0173 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0173 2022/12/30 14:21:02 - mmengine - INFO - Epoch(train) [16][ 300/1567] lr: 6.2978e-04 eta: 0:03:53 time: 0.1834 data_time: 0.0071 memory: 2656 loss: 0.0094 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0094 2022/12/30 14:21:20 - mmengine - INFO - Epoch(train) [16][ 400/1567] lr: 5.3453e-04 eta: 0:03:35 time: 0.1870 data_time: 0.0067 memory: 2656 loss: 0.0083 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0083 2022/12/30 14:21:37 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:21:38 - mmengine - INFO - Epoch(train) [16][ 500/1567] lr: 4.4705e-04 eta: 0:03:16 time: 0.1848 data_time: 0.0070 memory: 2656 loss: 0.0071 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0071 2022/12/30 14:21:57 - mmengine - INFO - Epoch(train) [16][ 600/1567] lr: 3.6735e-04 eta: 0:02:58 time: 0.1852 data_time: 0.0074 memory: 2656 loss: 0.0075 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0075 2022/12/30 14:22:15 - mmengine - INFO - Epoch(train) [16][ 700/1567] lr: 2.9544e-04 eta: 0:02:39 time: 0.1920 data_time: 0.0067 memory: 2656 loss: 0.0111 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0111 2022/12/30 14:22:34 - mmengine - INFO - Epoch(train) [16][ 800/1567] lr: 2.3134e-04 eta: 0:02:21 time: 0.1738 data_time: 0.0068 memory: 2656 loss: 0.0067 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0067 2022/12/30 14:22:52 - mmengine - INFO - Epoch(train) [16][ 900/1567] lr: 1.7505e-04 eta: 0:02:03 time: 0.1802 data_time: 0.0072 memory: 2656 loss: 0.0079 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0079 2022/12/30 14:23:11 - mmengine - INFO - Epoch(train) [16][1000/1567] lr: 1.2658e-04 eta: 0:01:44 time: 0.1842 data_time: 0.0067 memory: 2656 loss: 0.0096 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0096 2022/12/30 14:23:29 - mmengine - INFO - Epoch(train) [16][1100/1567] lr: 8.5947e-05 eta: 0:01:26 time: 0.1799 data_time: 0.0069 memory: 2656 loss: 0.0078 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0078 2022/12/30 14:23:48 - mmengine - INFO - Epoch(train) [16][1200/1567] lr: 5.3147e-05 eta: 0:01:07 time: 0.1940 data_time: 0.0068 memory: 2656 loss: 0.0085 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0085 2022/12/30 14:24:07 - mmengine - INFO - Epoch(train) [16][1300/1567] lr: 2.8190e-05 eta: 0:00:49 time: 0.1898 data_time: 0.0067 memory: 2656 loss: 0.0134 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0134 2022/12/30 14:24:25 - mmengine - INFO - Epoch(train) [16][1400/1567] lr: 1.1078e-05 eta: 0:00:30 time: 0.1823 data_time: 0.0068 memory: 2656 loss: 0.0087 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0087 2022/12/30 14:24:43 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:24:44 - mmengine - INFO - Epoch(train) [16][1500/1567] lr: 1.8150e-06 eta: 0:00:12 time: 0.1892 data_time: 0.0068 memory: 2656 loss: 0.0078 top1_acc: 1.0000 top5_acc: 1.0000 loss_cls: 0.0078 2022/12/30 14:24:56 - mmengine - INFO - Exp name: stgcn++_8xb16-bone-u100-80e_ntu60-xsub-keypoint-3d_20221230_130510 2022/12/30 14:24:56 - mmengine - INFO - Epoch(train) [16][1567/1567] lr: 3.9252e-10 eta: 0:00:00 time: 0.1763 data_time: 0.0068 memory: 2656 loss: 0.1808 top1_acc: 0.0000 top5_acc: 1.0000 loss_cls: 0.1808 2022/12/30 14:24:56 - mmengine - INFO - Saving checkpoint at 16 epochs 2022/12/30 14:25:02 - mmengine - INFO - Epoch(val) [16][100/129] eta: 0:00:01 time: 0.0408 data_time: 0.0075 memory: 378 2022/12/30 14:25:03 - mmengine - INFO - Epoch(val) [16][129/129] acc/top1: 0.8986 acc/top5: 0.9797 acc/mean1: 0.8985